समीकरण निकाय
$-k x+3 y-14 z=25$
$-15 x+4 y-k z=3$
$-4 x+y+3 z=4$
सभी $k$ के लिये किस समुच्चय में संगत होगा-
$R$
$R -\{-11,13\}$
$R -\{13\}$
$R -\{-11,11\}$
माना $a, b, c$ के लिए $b(a+c) \neq 0$ । यदि
$\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \cdot a}&{{{\left( { - 1} \right)}^{n + 1}} \cdot b}&{{{\left( { - 1} \right)}^n} \cdot c}\end{array}} \right| = 0$
तो $n$ का मान है
$c \in R$ का अधिकतम मान, जिसके लिए रैखिक समीकरण निकाय $x-c y-c z=0$, $c x-y+c z=0$, $c x+c y-z=0$ का एक अतुच्छ हल है, है -
सारणिक $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ का मान होगा
यदि रैखिक समीकरण निकाय $x-4 y+7 z=g$, $3 y-5 z=h$, $-2 x+5 y-9 z=k$ संगत (consistent) है, तो
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $